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Abstract—This paper presents the design and implementation turn-on voltage and useful current gain at very low-current
of a 20-GHz-band differential voltage-controlled oscillator (VCO)  densities. Moreover, with 50% larger thermal conductivity, InP
using InP heterojunction-bipolar-transistor process technology. gTg generally exhibit lower sensitivity of device parameters

Aimed at 20- or 40-Gb/s fiber-optic applications, the design is L . .
based on a single-stage feedbagk an?p?lifier with no inten(igional to temperature, resulting in lower self-heating under bias. Other

L or C. The salient features of the proposed VCO are wide fre- features of InP HBTs are low/ f noise corner frequency down
quency tuning range compared toL.C oscillators, and low power to 10 kHz, a key feature for many low phase-noise applications,
consumption and transistor count compared to ring-oscillator and high-efficiency devices for creating oscillators [1]-[3].
counterparts. The implemented VCO has an adjustable frequency apqther feature in modern InP HBTS is the removal of collector

range from 13.75 to 21.5 GHz and provides two complementary terial b th the b | It . il d
outputs. Total power consumption at 18.6 GHz is 130 mw, while Material benea € base layer, resuling in a cantilevere

the phase noise is—90.0 dBc/Hz measured at 1-MHz offset base layer resting upon a pedestal-like collector layer [4], [5].
frequency. This removal of excess collector material under the base layer

Index Terms—Differential stage, heterojunction bipolar tran- (ie., b_ase undercut profile) greatly reduces the base—collector
sistor, high-speed circuit, indium phosphide, phase noise, SONET, Capacitance&’sc.
voltage-controlled oscillator. The InP process considered in this paper provides high-speed
NPN HBTs with a single 1.5- and 2m-wide emitter strip,
while emitter lengths are scalable from 2 to 2@n. Unity
current gain frequencyf{) of the HBTs peaks at a collector

HE ever-increasing demand for bandwidth in data congurrent density, which is also the maximum allowable cur-

munication systems, e.g., synchronous optical networkent density for these devices. Maximum collector—emitter
(SONETS), has motivated research on very high-speed devipesakdown voltage is about 3 V. At a typical collector current
and circuits. A new generation of optical carrier systemgensity of 0.7 mA4m? and collector—emitter voltage of 1.2 V,
designed for data rates of 20 Gb/s, 40 Gb/s, and higher asstimatedf; is about 100 GHz. Two metallization layers are
beyond the reach of today’s silicon CMOS or conventionalvailable for interconnections with a minimum metal pitch of
bipolar processes. Indium—phosphide (InP) technology offers.m. Lossy transmission lines consisting of top-metal -
an attractive choice for high-speed optoelectronic integratedmiinsulating InP substrate and backside ground plane can
circuits (OEICs) due to its higher speed and the availabiliiso be used. Other available components in this technology
of optoelectronic transducers (E/O, O/E) compatible withre NiCr resistors, metal—insulator—metal (MIM) capacitors,
fiber-optic systems. InP heterojunction bipolar transistoed Schottky diodes. All active and passive components have
(HBTs) exhibit devicefr exceeding 150 GHz and benefitprocess- and geometry-scalable models [6] with built-in para-
from low-loss and low-parasitic interconnects due to thsitic elements RLC) and self-heating and breakdown models
semiinsulating substrate. for the HBTSs.

Due to their material properties, InP-based HBTs have sev-This paper presents the design and implementation of a dif-
eral advantages over their GaAs-based counterparts. The megitential INP-HBT voltage-controlled oscillator (VCO) suitable
include higher peak and saturated electron velocities, resultifag a 20- or 40-Gb/s (OC-768) SONET/synchronous digital hi-
in lower parasitic resistances and shorter transit timesWew erarchy (SDH) system. The VCO must operate over process

and temperature variations and exhibit a wide adjustable fre-
guency range. VCOs with center frequencies of 20 and 40 GHz
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Fig. 1. Differential VCO with common-collector feedback. Fig. 2. Differential VCO with Darlington-pair feedback.

supply voltage 0f-3.3 V, the VCO maximum power consump-40 GHz. However, maintaining oscillation over a moderate fre-
tion must not exceed 200 mW. . . quency range is a difficult task due to insufficient phase shift
In Secpon Il of thls_ paper, the deS|gn detal|_S of the DFQDOS%(#ound the loop. This factor causes oscillation to fail when this
wide tuning-range differential VCO is described. Section lijrcyit configuration is implemented with conventional (lower
presents the experimental results, and is followed by a concliseeq) bipolar transistors [7]. Simulations for the InP oscillator
sion in Section IV. of Fig. 1 show that a 5% tuning range can be obtained based on
typical process models and-&3.3-V power supply.

Il. WIDE TUNING-RANGE VCO DESIGN Iq or_der to imp_rove the Ipop phase con_dition necessary for
oscillation, a Darlington pair can be used in the feedback net-
The VCOs proposed here are fully differential and are baseark in cascade with the common-emitter amplifier, as shown
on the use of regenerative feedback applied to a differential aim+ig. 2. The delay introduced by the extra transistor in the Dar-
plifier. The idea is to obtain 180requency-dependent phasdington pair improves the phase condition to the point where a
shift within a single-stage differential cell relying on poles an80% tuning range is achieved around the midband oscillation
right-half-plane (RHP) zeros obtained in a cascode configufaequency. Naturally, the addition of a delay element in this loop
tion followed by emitter—follower buffers. To create the posresults in a reduction of the maximum oscillation frequency.
itive feedback, another 18@hase shift is obtained by swap-Simulations indicate that the maximum oscillation frequency of
ping the differential feedback lines from the output to the inpihe core oscillator in Fig. 2 is approximately 30 GHz.
of the amplifier. The proposed circuit can be treated as a feedAnother way of introducing excess phase or delay in a
back amplifier, or as aingle-stageing oscillator. Ultrafast InP  single-stage differential cell is to add a transistor pair in the
HBTs push the main pole of the amplifier to a very high fregain section of the loop. A suitable approach is to add an extra
guency, effectively close to secondary poles and RHP zeros, titiBT in a common-base configuration to the collector of each
making it possible to achieve 18phase from the differential common-emitter HBT to form a cascode configuration, as
cell at a frequency where small-signal gain is above 0 dB. In tteiiown in Fig. 3(a). BotiCryr and Cor of the common-base
manner, ahortring oscillator is realized with a single bufferedtransistor play a major role in the loop phase, compared to
stage; hence, saving on power consumption, device count, anel previous circuit (Fig. 2) where mainly th@gg of the
die area. extra transistor in the Darlington pair was increasing the delay
Fig. 1 shows the schematic of the simplest n-p-n-only di&round the loop. Similar to the previous two core oscillators,
ferential oscillator core. This core oscillator consists of a dithis oscillator was simulated with its respective layout para-
ferential input pair (a common-emitter pair) cascaded througftics using the HSPICE scalable models developed for the InP
an emitter—follower buffer. HBTs with emitter width of 1,5 HBTs. Simulations reveal that the core oscillator of Fig. 3(a)
and emitter lengths of 6- to 1em have been used in this circuit.achieves a 50% tuning range, while maximum oscillation
In order to comply with the maximum current limit, the HBTdrequency is just a few gigahertz less than the maximum
are biased around 0.7 m@h?, i.e., at a level safely below their frequency achieved in the Darlington-based oscillator of Fig. 2.
peak-fr point. Also, in order to avoid breakdown, maximunRobust oscillation is maintained under all simulated process
VoE is maintained at 2 V for dc quiescent point design anshodels and temperature variations; as a result, this circuit was
3.3 V when signal swing is considered. The simple structure afiosen for implementation and is studied in detail throughout
this oscillator results in a very high oscillation frequency abowbe remainder of this paper.
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_ egnd! capacitances, thus increasing the frequency of the oscillation.
3 teoy * o1 This is achieved by increasing the control voltage that simul-
. o = taneously boosts the tail current of the differential cascode, as
Ficane ! well as the bias currents of the emitter—follower pair. The oscil-
Voutp L e lator stabilizes at a frequency whdegge-signalgain is 0O dB.
. out The oscillation frequency is determined through transient simu-

lations that take into account large-signal nonlinear effects. For
this circuit, the oscillation frequency in transient simulation is
about 20 GHz.

B. Complete VCO Circuit

The complete VCO circuit, shown in Fig. 4, includes an input
voltage-to-current (/) converter, the core oscillator, and a
differential output driver stage. The inpuY// converter, con-
sisting of resistors and a diode-connected HBT, creates a ref-
erence current proportional to input control voltage. The refer-
noo ziproselioun) ence currentis mirrored to the tail current of the differential pair

I and to the bias current of the emitter—follower feedback HBTSs.
The output driver is a differential common-emitter amplifier
with emitter degeneration driving 5Q-resistors both on- and
off-chip (double-termination scheme). Thus, an equivalent load
-270 on the collector terminal of each HBT output driver is€25All
capacitors shown in Fig. 4 are parasitics, backannotated from
the layout, except for two MIM capacitors bypassing the power
supply and the base of the cascode HBTSs.
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N The layout of the InP VCO consists of a symmetrical config-
uration of 13 HBTs, 13 NiCr resistors, and 2 MIM capacitors.
The transistor count is one-third of that in a three-stage InP ring
T wec  Oscillator [8]. The VCO cell layout shown in Fig. 5(a) has a
physical size of 62Q:m x 318 um, or about 0.2um?. The ef-
®) fect of parasitic interconnect capacitors, i.e., metall-substrate
o o oo st o () OPer1oopprese Pt (9L-S), metal2-substrate (2-S), and metal1-metal2 (W1-2)
with or without an air bridge, is taken into account by extracting
the area and perimeter of overlap geometries. The dominant
component in most cases is the fringe (perimeter) capacitance.
The selected core oscillator, shown in Fig. 3(a), consists Bhrough preliminary transient simulations of the VCO, those
a differential common-emitter followed by common-base (casodes with maximursensitivity to parasitic capacitangenax-
code configuration) and an emitter—follower buffer pair. Thenum A f/AC) were identified in the feedback loop and ranked
simulated open-loop frequency response of such a differentcordingly. The physical layout was then optimized to mini-
cell for a midband control voltage is shown in Fig. 3(b). In thenize capacitance at the most sensitive nodes. Cross-coupling
simulation, the differential cell is opened at poidtandB [cf. capacitance, especially important between adjacent nodes with
Fig. 3(a)] and the outputs are loaded by a similar stage (inL&C’ phase difference, was reduced by allowing enough distance
feedback configuration, the cell is loaded by its own inputsjd > 5 ;zm) between nodes on the same metal layer. Air-bridge
The loading effect of an output buffer stage is also includesfructures were used as much as possible to minimize overlap
in the simulation. Fig. 3(b) reveals that a frequency-dependeamtpacitance between M1 and M2.
phase shift of—18C occurs at about 19 GHz, while the Fig. 5(b) shows the simulation testbench of the VCO. The
small-signal gain at this frequency is aroun@ dB. Therefore, output drivers are connected via on-chip wide (low-impedance)
the gain—phase conditions are achieved for oscillation startugnsmission lines (T-lines) to the output signal pads. Th&50-
around this frequency. Additional simulations indicate thaesistors in the testbench represent external terminations, e.g.,
when control voltagel(, — V..) is swept from 0.9 to 1.1 V, spectrum analyzer or power meter, while on-chigtb58HCr re-
the gain magnitude is increased and the °1&®ssing point sistors are included in the VCO on the collector of the output
in the phase plot is shifted toward higher frequencies. THBTs. The final circuit was characterized via backannotated
gain-bandwidth product is also increased. (postlayout) transient simulations. A robust oscillation was sus-
The operation of the differential cell of Fig. 3(a) as an oscitained under all simulated process models (nominal, fast, slow)
lator is guaranteed by the gain—phase condition. An increaseamd control voltages varying from2 to 0 V. Fig. 6 shows
tail currentincreasef; and the charging current of the parasitithe simulated output frequency of the InP VCO versus control

A. Core Oscillator
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Fig. 5. (a) Cell layout of the InP VCO. (b) Simulation testbench.

voltage based on nominal and corner models. Temperature siemperature rise decreases the output frequency, the oscillation
ulations were performed in a range frof®to 100°C. While a is maintained at a fairly constant output amplitude. Peak-to-peak
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amplitude of an output node at midband varied from 460 tc
425 mV when the temperature parameter (TEMPDC) was in
creased from OC to 100°C.

Vge (-3.3V)
I1l. | MPLEMENTATION AND CHARACTERIZATION Fig. 7. Photomicrograph of the InP die (top). Close-up view of a VCO
. . . (bottom).
The proposed wide-range VCO circuit was implemented
using the INP—HBT process described in Section I. Fig. 7 (top)

23 T T T - T T Y

shows the die photomicrograph of the InP VCO. The imple
mented test chip contains two VCO circuits per die (with sligh  22f -
design variations in bias and supply), high-frequency sign:
pads, and standard pads for supply, ground, and control inpi
The signal pads have smaller size (6®0 ;:m?) and exhibit a
capacitive loading under 20 fF. The die size is ¥.4.2 mn?.

A close-up view of an implemented InP VCO is shown in Fig. 7
(bottom). The testing was performed on-wafer using &%0-
RF prober. Maximum frequency of oscillation of the VCO,
measured on different InP wafers, varied from 18 to 23 GH 3|
at a supply voltage of 3.3 V. Detailed measurements are pre-
sented here for an average die with maximum VCO frequenc

21F-

— o
© =]
T T

put Frequency (GHz)
I &

Output Power (dBm)

of 21.5 GHz. With a larger supply voltage 8. = -4V, a “r :
maximum frequency of 30 GHz was obtained. 1ok 1;8 TS S S S S S S S
Fig. 8 shows the measured output frequency (solid line)ar  — = = 7 ™7 veontvolty '

output power (dashed line) of the InP VCO versus input control

voltage. The measured output frequency was adjustable fr6igy 8. Measured frequency of the VCO; measured power level (dBm) at each

13.75 to 21.5 GHz using a control voltage-e1.8 to 0 V. The output.

average gain of the VCO was about 4.3 GHz/V. The VCO ex-

hibits a wide tuning range of 45% around its midband frequendy_O was running at 18.69 GHz. The measured phase noise at

as compared to tuning ranges of 1%—-15% reported for VCQsMHz offset to the carrier was90.0 dBc/Hz; i.e., 2—-3-dBc/Hz

with LC-tuned [9] or multivibrator oscillators [3]. The two out-improvement in the phase noise. At 10-MHz offset frequency,

puts have 180phase difference. The measured power obtainéte phase noise was109.5 dBc/Hz. The phase noise is compa-

at each output varied from to over the input control range, aable to those reported for ring oscillators. A comparison be-

compared to a typical midrange simulation-e3 dBm. tween measurements and simulations indicates that the mea-
Fig. 9 shows the output spectrum of the VCO for a midbarglired results lie between nominal and slow models.

oscillation frequency of 18.56 GHz. The measured phase noiseThe design proposed in this paper consists of 13 HBTs

as indicated on the spectrum, was887.6 dBc/Hz at 1-MHz and dissipates 130 mW of power from-&8.3-V supply. The

offset frequency [10] and with a slightly enhanced test setumeasurement done at 18.56 GHz includes power dissipation in

eliminating noise introduced from control and supply voltagéhe input control circuit, the VCO core, and the output drivers.

even better phase noise was obtained. Fig. 10 shows a ploThéE differential core has an approximate power consumption of

output phase noise versus offset frequency obtained while 8®& mW at center frequencies. By comparison to conventional
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ATTEN 10dB AMKR ~87. 61dB/Hz delivering a measured power level 6.8 to —8 dBm. Total
RL_OdBm 10087 1. OMH= power consumption is 130 mW at 18.6 GHz and increases with
v the output frequency. At 1-MHz offset to the carrier, the mea-
sured phase noise is90.0 dBc/Hz and has a slope of about
—20 dBc/Hz per decade.
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